Space Invaders with MADDPG

This tutorial shows how to train an MADDPG agent on the space invaders atari environment.

../../_images/atari_space_invaders.gif

Atari Space Invaders

What is MADDPG?

MADDPG (Multi-Agent Deep Deterministic Policy Gradients) extends the DDPG (Deep Deterministic Policy Gradients) algorithm to enable cooperative or competitive training of multiple agents in complex environments, enhancing the stability and convergence of the learning process through decentralized actor and centralized critic architectures. For further information on MADDPG, check out the documentation.

Can I use it?

Action

Observation

Discrete

✔️

✔️

Continuous

✔️

✔️

Code

Train multiple agents using MADDPG

The following code should run without any issues. The comments are designed to help you understand how to use PettingZoo with AgileRL. If you have any questions, please feel free to ask in the Discord server.

"""This tutorial shows how to train an MADDPG agent on the space invaders atari environment.

Authors: Michael (https://github.com/mikepratt1), Nick (https://github.com/nicku-a)
"""

import os

import numpy as np
import supersuit as ss
import torch
from pettingzoo.atari import space_invaders_v2
from tqdm import trange

from agilerl.components.multi_agent_replay_buffer import MultiAgentReplayBuffer
from agilerl.hpo.mutation import Mutations
from agilerl.hpo.tournament import TournamentSelection
from agilerl.utils.utils import create_population
from agilerl.wrappers.pettingzoo_wrappers import PettingZooVectorizationParallelWrapper

if __name__ == "__main__":
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Define the network configuration
    NET_CONFIG = {
        "arch": "cnn",  # Network architecture
        "hidden_size": [32, 32],  # Network hidden size
        "channel_size": [32, 32],  # CNN channel size
        "kernel_size": [3, 3],  # CNN kernel size
        "stride_size": [2, 2],  # CNN stride size
        "normalize": True,  # Normalize image from range [0,255] to [0,1]
    }

    # Define the initial hyperparameters
    INIT_HP = {
        "POPULATION_SIZE": 2,
        "ALGO": "MADDPG",  # Algorithm
        # Swap image channels dimension from last to first [H, W, C] -> [C, H, W]
        "CHANNELS_LAST": True,
        "BATCH_SIZE": 32,  # Batch size
        "O_U_NOISE": True,  # Ornstein Uhlenbeck action noise
        "EXPL_NOISE": 0.1,  # Action noise scale
        "MEAN_NOISE": 0.0,  # Mean action noise
        "THETA": 0.15,  # Rate of mean reversion in OU noise
        "DT": 0.01,  # Timestep for OU noise
        "LR_ACTOR": 0.001,  # Actor learning rate
        "LR_CRITIC": 0.001,  # Critic learning rate
        "GAMMA": 0.95,  # Discount factor
        "MEMORY_SIZE": 100000,  # Max memory buffer size
        "LEARN_STEP": 100,  # Learning frequency
        "TAU": 0.01,  # For soft update of target parameters
    }

    num_envs = 8
    # Define the space invaders environment as a parallel environment
    env = space_invaders_v2.parallel_env()
    if INIT_HP["CHANNELS_LAST"]:
        # Environment processing for image based observations
        env = ss.frame_skip_v0(env, 4)
        env = ss.clip_reward_v0(env, lower_bound=-1, upper_bound=1)
        env = ss.color_reduction_v0(env, mode="B")
        env = ss.resize_v1(env, x_size=84, y_size=84)
        env = ss.frame_stack_v1(env, 4)
    env = PettingZooVectorizationParallelWrapper(env, n_envs=num_envs)
    env.reset()

    # Configure the multi-agent algo input arguments
    try:
        state_dim = [env.observation_space(agent).n for agent in env.agents]
        one_hot = True
    except Exception:
        state_dim = [env.observation_space(agent).shape for agent in env.agents]
        one_hot = False
    try:
        action_dim = [env.action_space(agent).n for agent in env.agents]
        INIT_HP["DISCRETE_ACTIONS"] = True
        INIT_HP["MAX_ACTION"] = None
        INIT_HP["MIN_ACTION"] = None
    except Exception:
        action_dim = [env.action_space(agent).shape[0] for agent in env.agents]
        INIT_HP["DISCRETE_ACTIONS"] = False
        INIT_HP["MAX_ACTION"] = [env.action_space(agent).high for agent in env.agents]
        INIT_HP["MIN_ACTION"] = [env.action_space(agent).low for agent in env.agents]

    # Pre-process image dimensions for pytorch convolutional layers
    if INIT_HP["CHANNELS_LAST"]:
        state_dim = [
            (state_dim[2], state_dim[0], state_dim[1]) for state_dim in state_dim
        ]

    # Append number of agents and agent IDs to the initial hyperparameter dictionary
    INIT_HP["N_AGENTS"] = env.num_agents
    INIT_HP["AGENT_IDS"] = env.agents

    # Create a population ready for evolutionary hyper-parameter optimisation
    pop = create_population(
        INIT_HP["ALGO"],
        state_dim,
        action_dim,
        one_hot,
        NET_CONFIG,
        INIT_HP,
        population_size=INIT_HP["POPULATION_SIZE"],
        num_envs=num_envs,
        device=device,
    )

    # Configure the multi-agent replay buffer
    field_names = ["state", "action", "reward", "next_state", "done"]
    memory = MultiAgentReplayBuffer(
        INIT_HP["MEMORY_SIZE"],
        field_names=field_names,
        agent_ids=INIT_HP["AGENT_IDS"],
        device=device,
    )

    # Instantiate a tournament selection object (used for HPO)
    tournament = TournamentSelection(
        tournament_size=2,  # Tournament selection size
        elitism=True,  # Elitism in tournament selection
        population_size=INIT_HP["POPULATION_SIZE"],  # Population size
        eval_loop=1,  # Evaluate using last N fitness scores
    )

    # Instantiate a mutations object (used for HPO)
    mutations = Mutations(
        algo=INIT_HP["ALGO"],
        no_mutation=0.2,  # Probability of no mutation
        architecture=0.2,  # Probability of architecture mutation
        new_layer_prob=0.2,  # Probability of new layer mutation
        parameters=0.2,  # Probability of parameter mutation
        activation=0,  # Probability of activation function mutation
        rl_hp=0.2,  # Probability of RL hyperparameter mutation
        rl_hp_selection=[
            "lr",
            "learn_step",
            "batch_size",
        ],  # RL hyperparams selected for mutation
        mutation_sd=0.1,  # Mutation strength
        # Define search space for each hyperparameter
        min_lr=0.00001,
        max_lr=0.01,
        min_learn_step=1,
        max_learn_step=120,
        min_batch_size=8,
        max_batch_size=64,
        agent_ids=INIT_HP["AGENT_IDS"],  # Agent IDs
        arch=NET_CONFIG["arch"],  # MLP or CNN
        rand_seed=1,
        device=device,
    )

    # Define training loop parameters
    max_steps = 4500  # Max steps (default: 2000000)
    learning_delay = 500  # Steps before starting learning
    evo_steps = 10000  # Evolution frequency
    eval_steps = None  # Evaluation steps per episode - go until done
    eval_loop = 1  # Number of evaluation episodes
    elite = pop[0]  # Assign a placeholder "elite" agent

    total_steps = 0

    # TRAINING LOOP
    print("Training...")
    pbar = trange(max_steps, unit="step")
    while np.less([agent.steps[-1] for agent in pop], max_steps).all():
        pop_episode_scores = []
        for agent in pop:  # Loop through population
            state, info = env.reset()  # Reset environment at start of episode
            scores = np.zeros(num_envs)
            completed_episode_scores = []
            steps = 0
            if INIT_HP["CHANNELS_LAST"]:
                state = {
                    agent_id: np.moveaxis(s, [-1], [-3])
                    for agent_id, s in state.items()
                }

            for idx_step in range(evo_steps // num_envs):
                agent_mask = info["agent_mask"] if "agent_mask" in info.keys() else None
                env_defined_actions = (
                    info["env_defined_actions"]
                    if "env_defined_actions" in info.keys()
                    else None
                )

                # Get next action from agent
                cont_actions, discrete_action = agent.get_action(
                    states=state,
                    training=True,
                    agent_mask=agent_mask,
                    env_defined_actions=env_defined_actions,
                )
                if agent.discrete_actions:
                    action = discrete_action
                else:
                    action = cont_actions

                # Act in environment
                next_state, reward, termination, truncation, info = env.step(action)

                scores += np.sum(np.array(list(reward.values())).transpose(), axis=-1)
                total_steps += num_envs
                steps += num_envs

                # Image processing if necessary for the environment
                if INIT_HP["CHANNELS_LAST"]:
                    next_state = {
                        agent_id: np.moveaxis(ns, [-1], [-3])
                        for agent_id, ns in next_state.items()
                    }

                # Save experiences to replay buffer
                memory.save_to_memory(
                    state,
                    cont_actions,
                    reward,
                    next_state,
                    termination,
                    is_vectorised=True,
                )

                # Learn according to learning frequency
                # Handle learn steps > num_envs
                if agent.learn_step > num_envs:
                    learn_step = agent.learn_step // num_envs
                    if (
                        idx_step % learn_step == 0
                        and len(memory) >= agent.batch_size
                        and memory.counter > learning_delay
                    ):
                        # Sample replay buffer
                        experiences = memory.sample(agent.batch_size)
                        # Learn according to agent's RL algorithm
                        agent.learn(experiences)
                # Handle num_envs > learn step; learn multiple times per step in env
                elif (
                    len(memory) >= agent.batch_size and memory.counter > learning_delay
                ):
                    for _ in range(num_envs // agent.learn_step):
                        # Sample replay buffer
                        experiences = memory.sample(agent.batch_size)
                        # Learn according to agent's RL algorithm
                        agent.learn(experiences)

                state = next_state

                # Calculate scores and reset noise for finished episodes
                reset_noise_indices = []
                term_array = np.array(list(termination.values())).transpose()
                trunc_array = np.array(list(truncation.values())).transpose()
                for idx, (d, t) in enumerate(zip(term_array, trunc_array)):
                    if np.any(d) or np.any(t):
                        completed_episode_scores.append(scores[idx])
                        agent.scores.append(scores[idx])
                        scores[idx] = 0
                        reset_noise_indices.append(idx)
                agent.reset_action_noise(reset_noise_indices)

            pbar.update(evo_steps // len(pop))

            agent.steps[-1] += steps
            pop_episode_scores.append(completed_episode_scores)

        # Evaluate population
        fitnesses = [
            agent.test(
                env,
                swap_channels=INIT_HP["CHANNELS_LAST"],
                max_steps=eval_steps,
                loop=eval_loop,
            )
            for agent in pop
        ]
        mean_scores = [
            (
                np.mean(episode_scores)
                if len(episode_scores) > 0
                else "0 completed episodes"
            )
            for episode_scores in pop_episode_scores
        ]

        print(f"--- Global steps {total_steps} ---")
        print(f"Steps {[agent.steps[-1] for agent in pop]}")
        print(f"Scores: {mean_scores}")
        print(f'Fitnesses: {["%.2f"%fitness for fitness in fitnesses]}')
        print(
            f'5 fitness avgs: {["%.2f"%np.mean(agent.fitness[-5:]) for agent in pop]}'
        )

        # Tournament selection and population mutation
        elite, pop = tournament.select(pop)
        pop = mutations.mutation(pop)

        # Update step counter
        for agent in pop:
            agent.steps.append(agent.steps[-1])

    # Save the trained algorithm
    path = "./models/MADDPG"
    filename = "MADDPG_trained_agent.pt"
    os.makedirs(path, exist_ok=True)
    save_path = os.path.join(path, filename)
    elite.save_checkpoint(save_path)

    pbar.close()
    env.close()

Watch the trained agents play

The following code allows you to load your saved MADDPG algorithm from the previous training block, test the algorithms performance, and then visualise a number of episodes as a gif.

import os

import imageio
import numpy as np
import supersuit as ss
import torch
from pettingzoo.atari import space_invaders_v2
from PIL import Image, ImageDraw

from agilerl.algorithms.maddpg import MADDPG


# Define function to return image
def _label_with_episode_number(frame, episode_num):
    im = Image.fromarray(frame)

    drawer = ImageDraw.Draw(im)

    if np.mean(frame) < 128:
        text_color = (255, 255, 255)
    else:
        text_color = (0, 0, 0)
    drawer.text(
        (im.size[0] / 20, im.size[1] / 18), f"Episode: {episode_num+1}", fill=text_color
    )

    return im


if __name__ == "__main__":
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Configure the environment
    env = space_invaders_v2.parallel_env(render_mode="rgb_array")
    channels_last = True  # Needed for environments that use images as observations
    if channels_last:
        # Environment processing for image based observations
        env = ss.frame_skip_v0(env, 4)
        env = ss.clip_reward_v0(env, lower_bound=-1, upper_bound=1)
        env = ss.color_reduction_v0(env, mode="B")
        env = ss.resize_v1(env, x_size=84, y_size=84)
        env = ss.frame_stack_v1(env, 4)
    env.reset()
    try:
        state_dim = [env.observation_space(agent).n for agent in env.agents]
        one_hot = True
    except Exception:
        state_dim = [env.observation_space(agent).shape for agent in env.agents]
        one_hot = False
    try:
        action_dim = [env.action_space(agent).n for agent in env.agents]
        discrete_actions = True
        max_action = None
        min_action = None
    except Exception:
        action_dim = [env.action_space(agent).shape[0] for agent in env.agents]
        discrete_actions = False
        max_action = [env.action_space(agent).high for agent in env.agents]
        min_action = [env.action_space(agent).low for agent in env.agents]

    # Pre-process image dimensions for pytorch convolutional layers
    if channels_last:
        state_dim = [
            (state_dim[2], state_dim[0], state_dim[1]) for state_dim in state_dim
        ]

    # Append number of agents and agent IDs to the initial hyperparameter dictionary
    n_agents = env.num_agents
    agent_ids = env.agents

    # Load the saved agent
    path = "./models/MADDPG/MADDPG_trained_agent.pt"
    maddpg = MADDPG.load(path, device)

    # Define test loop parameters
    episodes = 10  # Number of episodes to test agent on
    max_steps = 500  # Max number of steps to take in the environment in each episode

    rewards = []  # List to collect total episodic reward
    frames = []  # List to collect frames
    indi_agent_rewards = {
        agent_id: [] for agent_id in agent_ids
    }  # Dictionary to collect inidivdual agent rewards

    # Test loop for inference
    for ep in range(episodes):
        state, info = env.reset()
        agent_reward = {agent_id: 0 for agent_id in agent_ids}
        score = 0
        for _ in range(max_steps):
            if channels_last:
                state = {
                    agent_id: np.moveaxis(np.expand_dims(s, 0), [3], [1])
                    for agent_id, s in state.items()
                }

            agent_mask = info["agent_mask"] if "agent_mask" in info.keys() else None
            env_defined_actions = (
                info["env_defined_actions"]
                if "env_defined_actions" in info.keys()
                else None
            )

            # Get next action from agent
            cont_actions, discrete_action = maddpg.get_action(
                state,
                training=False,
                agent_mask=agent_mask,
                env_defined_actions=env_defined_actions,
            )
            if maddpg.discrete_actions:
                action = discrete_action
            else:
                action = cont_actions

            # Save the frame for this step and append to frames list
            frame = env.render()
            frames.append(_label_with_episode_number(frame, episode_num=ep))

            # Take action in environment
            state, reward, termination, truncation, info = env.step(action)

            # Save agent's reward for this step in this episode
            for agent_id, r in reward.items():
                agent_reward[agent_id] += r

            # Determine total score for the episode and then append to rewards list
            score = sum(agent_reward.values())

            # Stop episode if any agents have terminated
            if any(truncation.values()) or any(termination.values()):
                break

        rewards.append(score)

        # Record agent specific episodic reward for each agent
        for agent_id in agent_ids:
            indi_agent_rewards[agent_id].append(agent_reward[agent_id])

        print("-" * 15, f"Episode: {ep}", "-" * 15)
        print("Episodic Reward: ", rewards[-1])
        for agent_id, reward_list in indi_agent_rewards.items():
            print(f"{agent_id} reward: {reward_list[-1]}")
    env.close()

    # Save the gif to specified path
    gif_path = "./videos/"
    os.makedirs(gif_path, exist_ok=True)
    imageio.mimwrite(
        os.path.join("./videos/", "space_invaders.gif"), frames, duration=10
    )