Multi-Agent Twin-Delayed Deep Deterministic Policy Gradient (MATD3)

MATD3 (Multi-Agent Twin Delayed Deep Deterministic Policy Gradients) extends the MADDPG algorithm to reduce overestimation bias in multi-agent domains through the use of a second set of critic networks and delayed updates of the policy networks. This enables superior performance when compared to MADDPG.

Can I use it?

Action

Observation

Discrete

✔️

✔️

Continuous

✔️

✔️

Gumbel-Softmax

The Gumbel-Softmax activation function is a differentiable approximation that enables gradient-based optimization through continuous relaxation of discrete action spaces in multi-agent reinforcement learning, allowing agents to learn and improve decision-making in complex environments with discrete choices. If you would like to customise the mlp output activation function, you can define it within the network configuration using the key “output_activation”. User definition for the output activation is however, unnecessary, as the algorithm will select the appropriate function given the environments action space.

Agent Masking

If you need to take actions from agents at different timesteps, you can use agent masking to only retrieve new actions for certain agents whilst providing ‘environment defined actions’ for other agents, which act as a nominal action for such “masked” agents to take. These nominal actions should be returned as part of the info dictionary. Following the PettingZoo API we recommend the info dictionary to be keyed by the agents, with env_defined_actions defined as follows:

info = {'speaker_0': {'env_defined_actions':  None},
        'listener_0': {'env_defined_actions': np.array([0,0,0,0,0])}

For agents that you wish not to be masked, the env_defined_actions should be set to None. If your environment has discrete action spaces then provide ‘env_defined_actions’ as a numpy array with a single value. For example, an action space of type Discrete(5) may have an env_defined_action of np.array([4]). For an environment with continuous actions spaces (e.g. Box(0, 1, (5,))) then the shape of the array should be the size of the action space (np.array([0.5, 0.5, 0.5, 0.5, 0.5])). Agent masking is handled automatically by the AgileRL multi-agent training function, but can be implemented in a custom loop as follows:

env_defined_actions = {agent: info[agent]["env_defined_actions"] for agent in env.agents}
state, info = env.reset()  # or: next_state, reward, done, truncation, info = env.step(action)
cont_actions, discrete_action = agent.get_action(state, env_defined_actions=env_defined_actions)
if agent.discrete_actions:
    action = discrete_action
else:
    action = cont_actions

Example

import numpy as np
import torch
from pettingzoo.mpe import simple_speaker_listener_v4
from tqdm import trange

from agilerl.components.multi_agent_replay_buffer import MultiAgentReplayBuffer
from agilerl.vector.pz_async_vec_env import AsyncPettingZooVecEnv

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
num_envs = 8
env = simple_speaker_listener_v4.parallel_env(max_cycles=25, continuous_actions=True)
env = AsyncPettingZooVecEnv([lambda: env for _ in range(num_envs)])
env.reset()

# Configure the multi-agent algo input arguments
try:
    state_dim = [env.single_observation_space(agent).n for agent in env.agents]
    one_hot = True
except Exception:
    state_dim = [env.single_observation_space(agent).shape for agent in env.agents]
    one_hot = False
try:
    action_dim = [env.single_action_space(agent).n for agent in env.agents]
    discrete_actions = True
    max_action = None
    min_action = None
except Exception:
    action_dim = [env.single_action_space(agent).shape[0] for agent in env.agents]
    discrete_actions = False
    max_action = [env.single_action_space(agent).high for agent in env.agents]
    min_action = [env.single_action_space(agent).low for agent in env.agents]

channels_last = False  # Swap image channels dimension from last to first [H, W, C] -> [C, H, W]
n_agents = env.num_agents
agent_ids = [agent_id for agent_id in env.agents]
field_names = ["state", "action", "reward", "next_state", "done"]
memory = MultiAgentReplayBuffer(
    memory_size=1_000_000,
    field_names=field_names,
    agent_ids=agent_ids,
    device=device,
)

agent = MATD3(
    state_dims=state_dim,
    action_dims=action_dim,
    one_hot=one_hot,
    n_agents=n_agents,
    agent_ids=agent_ids,
    max_action=max_action,
    min_action=min_action,
    vect_noise_dim=num_envs,
    discrete_actions=discrete_actions,
    device=device,
)

# Define training loop parameters
max_steps = 100000  # Max steps
total_steps = 0

while agent.steps[-1] < max_steps:
    state, info  = env.reset() # Reset environment at start of episode
    scores = np.zeros(num_envs)
    completed_episode_scores = []
    if channels_last:
        state = {agent_id: np.moveaxis(s, [-1], [-3]) for agent_id, s in state.items()}

    for _ in range(1000):
        # Get next action from agent
        cont_actions, discrete_action = agent.get_action(
            states=state,
            training=True,
            infos=info,
        )
        if agent.discrete_actions:
            action = discrete_action
        else:
            action = cont_actions

        # Act in environment
        next_state, reward, termination, truncation, info = env.step(action)

        scores += np.sum(np.array(list(reward.values())).transpose(), axis=-1)
        total_steps += num_envs
        steps += num_envs

        # Save experiences to replay buffer
        if channels_last:
            next_state = {
                agent_id: np.moveaxis(ns, [-1], [-3])
                for agent_id, ns in next_state.items()
            }
        memory.save_to_memory(state, cont_actions, reward, next_state, done, is_vectorised=True)

        # Learn according to learning frequency
        if len(memory) >= agent.batch_size:
            for _ in range(num_envs // agent.learn_step):
                experiences = memory.sample(agent.batch_size) # Sample replay buffer
                agent.learn(experiences) # Learn according to agent's RL algorithm

        # Update the state
        state = next_state

        # Calculate scores and reset noise for finished episodes
        reset_noise_indices = []
        term_array = np.array(list(termination.values())).transpose()
        trunc_array = np.array(list(truncation.values())).transpose()
        for idx, (d, t) in enumerate(zip(term_array, trunc_array)):
            if np.any(d) or np.any(t):
                completed_episode_scores.append(scores[idx])
                agent.scores.append(scores[idx])
                scores[idx] = 0
                reset_noise_indices.append(idx)
        agent.reset_action_noise(reset_noise_indices)

    agent.steps[-1] += steps

Neural Network Configuration

To configure the network architecture, pass a kwargs dict to the MATD3 net_config field. Full arguments can be found in the documentation of EvolvableMLP and EvolvableCNN. For an MLP, this can be as simple as:

NET_CONFIG = {
      'arch': 'mlp',      # Network architecture
      'hidden_size': [32, 32]  # Network hidden size
  }

Or for a CNN:

NET_CONFIG = {
      'arch': 'cnn',      # Network architecture
      'hidden_size': [32,32],    # Network hidden size
      'channel_size': [32, 32], # CNN channel size
      'kernel_size': [3, 3],   # CNN kernel size
      'stride_size': [2, 2],   # CNN stride size
      'normalize': True   # Normalize image from range [0,255] to [0,1]
  }
agent = MATD3(state_dims=state_dim,
              action_dims=action_dim,
              one_hot=one_hot,
              n_agents=n_agents,
              agent_ids=agent_ids,
              max_action=max_action,
              min_action=min_action,
              discrete_actions=discrete_actions,
              net_config=NET_CONFIG)   # Create MATD3 agent

Saving and loading agents

To save an agent, use the save_checkpoint method:

from agilerl.algorithms.matd3 import MATD3

agent = MATD3(state_dims=state_dim,
               action_dims=action_dim,
               one_hot=one_hot,
               n_agents=n_agents,
               agent_ids=agent_ids,
               max_action=max_action,
               min_action=min_action,
               discrete_actions=discrete_actions)   # Create MATD3 agent

checkpoint_path = "path/to/checkpoint"
agent.save_checkpoint(checkpoint_path)

To load a saved agent, use the load method:

from agilerl.algorithms.matd3 import MATD3

checkpoint_path = "path/to/checkpoint"
agent = MATD3.load(checkpoint_path)

Parameters

class agilerl.algorithms.matd3.MATD3(state_dims, action_dims, one_hot, n_agents, agent_ids, max_action, min_action, discrete_actions, O_U_noise=True, expl_noise=0.1, vect_noise_dim=1, mean_noise=0.0, theta=0.15, dt=0.01, index=0, policy_freq=2, net_config={'arch': 'mlp', 'hidden_size': [64, 64]}, batch_size=64, lr_actor=0.001, lr_critic=0.01, learn_step=5, gamma=0.95, tau=0.01, mut=None, actor_networks=None, critic_networks=None, device='cpu', accelerator=None, torch_compiler=None, wrap=True)

The MATD3 algorithm class. MATD3 paper: https://arxiv.org/abs/1910.01465

Parameters:
  • state_dims (list[tuple]) – State observation dimensions for each agent

  • action_dims (list[int]) – Action dimensions for each agent

  • one_hot (bool) – One-hot encoding, used with discrete observation spaces

  • n_agents (int) – Number of agents

  • agent_ids (list[str]) – Agent ID for each agent

  • max_action (list[float]) – Upper bound of the action space for each agent

  • min_action (list[float]) – Lower bound of the action space for each agent

  • discrete_actions (bool, optional) – Boolean flag to indicate a discrete action space

  • O_U_noise (bool, optional) – Use Ornstein Uhlenbeck action noise for exploration. If False, uses Gaussian noise. Defaults to True

  • vect_noise_dim (int, optional) – Vectorization dimension of environment for action noise, defaults to 1

  • expl_noise (float, optional) – Scale for Ornstein Uhlenbeck action noise, or standard deviation for Gaussian exploration noise

  • mean_noise (float, optional) – Mean of exploration noise, defaults to 0.0

  • theta (float, optional) – Rate of mean reversion in Ornstein Uhlenbeck action noise, defaults to 0.15

  • dt (float, optional) – Timestep for Ornstein Uhlenbeck action noise update, defaults to 1e-2

  • policy_freq (int, optional) – Policy update frequency, defaults to 2

  • index (int, optional) – Index to keep track of object instance during tournament selection and mutation, defaults to 0

  • net_config (dict, optional) – Network configuration, defaults to mlp with hidden size [64,64]

  • batch_size (int, optional) – Size of batched sample from replay buffer for learning, defaults to 64

  • lr_actor (float, optional) – Learning rate for actor optimizer, defaults to 0.001

  • lr_critic (float, optional) – Learning rate for critic optimizer, defaults to 0.01

  • learn_step (int, optional) – Learning frequency, defaults to 5

  • gamma (float, optional) – Discount factor, defaults to 0.95

  • tau (float, optional) – For soft update of target network parameters, defaults to 0.01

  • mutation (str, optional) – Most recent mutation to agent, defaults to None

  • actor_networks (list[nn.Module], optional) – List of custom actor networks, defaults to None

  • critic_networks (list[list[nn.Module]], optional) – List containing two lists of custom critic networks, defaults to None

  • device (str, optional) – Device for accelerated computing, ‘cpu’ or ‘cuda’, defaults to ‘cpu’

  • accelerator (accelerate.Accelerator(), optional) – Accelerator for distributed computing, defaults to None

  • torch_compile (str, optional) – the torch compile mode ‘default’, ‘reduce-overhead’ or ‘max-autotune’

  • wrap (bool, optional) – Wrap models for distributed training upon creation, defaults to True

action_noise(idx)
Create action noise for exploration, either Ornstein Uhlenbeck or

from a normal distribution.

Parameters:

idx (int) – Agent index for action dims

Returns:

Action noise

Return type:

np.ndArray

clone(index=None, wrap=True)

Returns cloned agent identical to self.

Parameters:

index (int, optional) – Index to keep track of agent for tournament selection and mutation, defaults to None

extract_action_masks(infos)

Extract observations and action masks into two separate dictionaries

Parameters:

infos (Dict[str, Dict[...]]) – Info dict

extract_agent_masks(infos)

Extract env_defined_actions from info dictionary and determine agent masks

Parameters:

infos (Dict[str, Dict[...]]) – Info dict

get_action(states, training=True, infos=None)

Returns the next action to take in the environment. Epsilon is the probability of taking a random action, used for exploration. For epsilon-greedy behaviour, set epsilon to 0.

Parameters:
  • state (Dict[str, numpy.Array]) – Environment observations: {‘agent_0’: state_dim_0, …, ‘agent_n’: state_dim_n}

  • training (bool, optional) – Agent is training, use exploration noise, defaults to True

  • env_defined_actions (Dict[str, np.array]) – Dictionary of actions defined by the environment: {‘agent_0’: np.array, …, ‘agent_n’: np.array}

learn(experiences)

Updates agent network parameters to learn from experiences.

Parameters:

experience – Tuple of dictionaries containing batched states, actions, rewards, next_states,

dones in that order for each individual agent. :type experience: Tuple[Dict[str, torch.Tensor]]

learn_individual(idx, agent_id, actor, critic_1, critic_target_1, critic_2, critic_target_2, actor_optimizer, critic_1_optimizer, critic_2_optimizer, input_combined, stacked_states, stacked_actions, next_input_combined, stacked_next_states, stacked_next_actions, states, actions, rewards, dones)

Inner call to each agent for the learning/algo training steps, up until the soft updates. Applies all forward/backward props

classmethod load(path, device='cpu', accelerator=None)

Creates agent with properties and network weights loaded from path.

Parameters:
  • path (string) – Location to load checkpoint from

  • device (str, optional) – Device for accelerated computing, ‘cpu’ or ‘cuda’, defaults to ‘cpu’

  • accelerator (accelerate.Accelerator(), optional) – Accelerator for distributed computing, defaults to None

load_checkpoint(path)

Loads saved agent properties and network weights from checkpoint.

Parameters:

path (string) – Location to load checkpoint from

process_infos(infos)

Process the information, extract env_defined_actions, action_masks and agent_masks

Parameters:

infos (Dict[str, Dict[...]]) – Info dict

recompile()

Recompile all models

remove_compile_prefix(state_dict)

Removes _orig_mod prefix on state dict created by torch compile

Parameters:

state_dict (dict) – model state dict

Returns:

state dict with prefix removed

Return type:

dict

reset_action_noise(indices)

Reset action noise.

save_checkpoint(path)

Saves a checkpoint of agent properties and network weights to path.

Parameters:

path (string) – Location to save checkpoint at

scale_to_action_space(action, idx)

Scales actions to action space defined by self.min_action and self.max_action.

Parameters:

action (numpy.ndarray) – Action to be scaled

soft_update(net, target)

Soft updates target network.

test(env, swap_channels=False, max_steps=None, loop=3, sum_scores=True)

Returns mean test score of agent in environment with epsilon-greedy policy.

Parameters:
  • env (Gym-style environment) – The environment to be tested in

  • swap_channels (bool, optional) – Swap image channels dimension from last to first [H, W, C] -> [C, H, W], defaults to False

  • max_steps (int, optional) – Maximum number of testing steps, defaults to None

  • loop (int, optional) – Number of testing loops/episodes to complete. The returned score is the mean. Defaults to 3

  • sum_scores (book, optional) – Boolean flag to indicate whether to sum sub-agent scores, defaults to True